YG-DCO-040-5.3.11C

Yorkshire Green Energy Enablemen (GREEN) Project

Volume 5

Document 5.3.11C ES Chapter 11 Appendix 11C - Agricultural Land Classification for Tadcaster CSECs

Final Issue A November 2022

Planning Inspectorate Reference: EN020024

Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 Regulation 5(2)(a)

nationalgrid

Page intentionally blank

Contents

ntroduction Background Site description Definitions Desk study nformation Sources Soils	1 1 2 3 3
nformation Sources	
Agricultural land classification Aerial imagery	4 4 4
Site Survey Methodology Site description Soils Agroclimatic data Direct limitations to ALC grade nteractive limitations to ALC grade	5 5 6 7 7 7
Overall agricultural land classification	8
Summary and Conclusions	9
r C	irect limitations to ALC grade Interactive limitations to ALC grade Inverall agricultural land classification

Table 1.1 - Data sources used to inform the agriculture and soils assessment3Table 1.2 - Summary of soil types and soil erodibility risk for the soil within the study4area4Table 1.3 - Interpolated agroclimatic data for the Site7Table 1.4 - Summary of Agricultural Land Classification at the Site8

Annex 11C.1 – Soil Survey Record and ALC Breakdown Annex 11C.2 – Droughtiness Calculations Annex 11C.3 – Laboratory Results

Version history	Ory					
Date	Version	Status	Description/changes			
01/11/2022	А	Final	First Issue			

1. Agricultural Land Classification for the Tadcaster CSEC Area

1.1 Introduction

Background

1.1.1 Agricultural Land Classification studies have been undertaken to provide an accurate baseline for areas of permanent development or where long-term soil disturbance is likely to take place as part of the Yorkshire Green Energy Enablement Project (referred to as the Project or Yorkshire GREEN). These survey locations were agreed through consultation with Natural England and have informed the Environmental Impact Assessment for **Chapter 11 Agriculture and Soils (Volume 5, Document 5.2.11).**

Site description

- 1.1.2 This appendix covers the areas where the Tadcaster Cable Sealing End Compounds (CSEC) are proposed; the survey boundary can be seen on **Figure 11.6**, **Volume 5**, **Document 5.4.11**.
- 1.1.3 The Site is located within the administrative area of North Yorkshire County Council, and lies to approximately 17 km south west of York, approximate central grid reference SE 459 416.
- 1.1.4 The Site comprises two agricultural fields, and a small woodland plantation covering an area of approximately 21 ha. Surrounding land use includes further agricultural fields to the north, south, east and west of the Site, with the town of Tadcaster approximately 3km north east of the Site.
- 1.1.5 The entire site is typically flat lying, with gentle slopes to the south and east, the elevation ranges from 43 to 52 m ASL.
- 1.1.6 Photograph 1 shows a view of the Site conditions on the day of the survey. The weather was overcast with sunny intervals and one short rain shower.

Plate 1: Site condition on the day of the survey (northern field looking east)

Definitions

- 1.1.7 The **Agricultural Land Classification** (ALC) system was devised by the Ministry of Agriculture, Fisheries and Food (MAFF) (1988)¹ and is the standard method for determining the quality of agricultural land in England and Wales according to its versatility, productivity and workability, based upon inter-related parameters including climate, relief, soil characteristics and drainage; i.e. ALC assesses land quality based upon the type and level of agricultural production the land can potentially support. The ALC grade is based on the most limiting factor to agricultural production, this may be a climatic limitation, site limitation (climate, gradient, risk of flooding, microrelief), soil limitation (texture and structure, depth, stoniness, chemical), or an interactive limitation (soil wetness, droughtiness, erosion). The ALC places land into one of five grades: Grade 1 (excellent); Grade 2 (very good); Grade 3 (good to moderate) which is divided into Subgrades 3a (good) and 3b (moderate); Grade 4 (poor); and Grade 5 (very poor).
- 1.1.8 **Best and Most Versatile** (BMV) agricultural land is defined as land of excellent to good agricultural quality (ALC Grades 1, 2 and Subgrade 3a) and is afforded a degree of protection in the National Planning Policy Framework (NPPF), 2021².
- 1.1.9 **Soil series** are the lowest category in the soil classification system and are precisely defined based upon particle-size distribution, parent material (substrate) type, colour, and mineralogical characteristics. **Soil Associations** are groupings of related soil series.

¹ MAFF, October 1988, Agricultural Land Classification of England and Wales: Revised criteria for grading the quality of agricultural land (ALC011)

² Ministry of Housing, Communities and Local Government, 2021, National Planning Policy Framework, https://www.gov.uk/government/publications/national-planning-policy-framework--2

1.2 Desk study

Information Sources

1.2.1 Information about the soils and agricultural land present on the Site was obtained from the published sources outlined in **Table 1.1**. This information assists in preparing the surveyor on likely site conditions prior to commencement of the survey.

Organisation	Data Source	Data Provided
The Soil Survey of England and Wales	Soils and their Use in Northern England and accompanying 1:250,000 map Sheet 1 ³ .	Mapped soil associations and details of soil characteristics.
MAFF (now DEFRA)	Provisional ALC 1:250,000 mapping Yorkshire and The Humber (ALC003) ⁴ .	Mapped ALC distributions - agricultural land quality data.
Natural England	Likelihood of Best and Most Versatile (BMV) Agricultural Land - Strategic scale map Yorkshire and The Humber (ALC015) ⁵ .	1:250,000 scale mapping predicting the likelihood of BMV agricultural land.
Google	Google Maps incorporating Streetview ⁶ and Google Earth Pro ⁷ .	Aerial and street level imaging of the Project.
Department of the Environment, Farming and Rural Affairs (Defra)	The Government's geographic information website: Multi- Agency Geographical Information for the Countryside MAGIC.gov.uk ^{8.}	Administrative area boundaries, Provisional and Post-1988 ALC data, and aerial imaging available to view digitally and overlay.
Cranfield University (Knox et al.)	Report: Research to develop the evidence base on soil	Soil erosion criteria to inform soil sensitivity classifications.

Table 1.1 - Data sources used to inform the agriculture and soils assessmen

 ³ Soil Survey of England and Wales (1984). Soils and their Use in Northern England and accompanying 1:250,000 map Sheet 1. National Soil Resources Institute; Cranfield.
 ⁴ MAFF (1993). 1:250,000 Provisional Agricultural Land Classification Sheet, Yorkshire and the Humber (ALC003) (online). Available at: <u>https://data.gov.uk/dataset/952421ec-da63-4569-817d-4d6399df40a1/provisional-agricultural-land-classification-alc</u> (Accessed 30 June 2021).
 ⁵ Natural England (2017) Likelihood of Best and Most Versatile (BMV) Agricultural Land - Strategic scale map Yorkshire and The Humber (ALC015). Natural England; York.

⁶ Google (2021). Google Maps incorporating Google Streetview. (online) (Accessed 30 June 2021).

⁷ Google (2022). Google Earth Pro. (online). (Accessed April 2022).

⁸ Defra (2021). Multi-Agency Geographical Information for the Countryside (MAGIC). (online) Available at <u>https://magic.defra.gov.uk/magicmap.aspx</u> (Accessed 30 June 2021).

Organisation	Data Source	Data Provided
	erosion and water use in agriculture ⁹ .	
Cranfield University	Climatological Data for Agricultural Land Classification ¹⁰	Agroclimatic data to inform ALC.

Soils

- 1.2.2 The scale of the Soil Survey of England and Wales (1984) mapping is such that it is not accurate to the field level and does not pick up small-scale local variations in soil type. It does however provide a general indication of the soil types within the Site and the wider Borough. The Site lies in an area of Aberford (511a) association.
- 1.2.3 A summary of the characteristics of this soil association is provided in **Table 1.2**.

Table 1.2 – Summary of soil types and soil erodibility risk for the soil within the study area

Soil Association	Description	Erodability			
Aberford (511a)	Shallow, locally brashy well drained calcareous fine loamy soils over limestone. Some deeper calcareous soils in colluvium.	Small Risk (Water).			
	Soils are permeable and well drained (Wetness Class I) although minor drainage is required where thin mudstones or clay shales outcrop.				

Agricultural land classification

- 1.2.4 The Provisional 1:250,000 ALC mapping indicates that agricultural land within the Site is ALC Grade 2 (very good). However, as with the soils data, the scale of the mapping is not accurate at the field level as it does not pick up variations in ALC grade for areas less than approximately 80 ha. However, it does provide an indication of the predominant ALC grading in the wider area.
- 1.2.5 The BMV Likelihood mapping indicates that agricultural land within the Site is of high likelihood of BMV land (20 60 % area of BMV).

Aerial imagery

1.2.6 Satellite imagery of the Site, shown in Plate 1, which shows some signs of soil variability in the central and southern field, and no obvious changes in the northern field.

⁹ Cranfield University, Knox *et al.* (2015). 'Research to develop the evidence base on soil erosion and water use in agriculture: Final Technical Report. pp147'. (online) (Accessed 30 June 2021).

¹⁰Cranfield University (2013). Climatological Data for Agricultural Land Classification (online). (Accessed 30 June 2021).

Plate 2: Satellite imagery of the Site (© Google Earth)

1.3 Site Survey

Methodology

- 1.3.1 A soil survey was undertaken from 30 and 31 August 2022 by experienced soil surveyors using augered soil cores and soil profile pits. A detailed soil survey was undertaken with 1 point per ha.
- 1.3.2 Auger cores were taken using a 70 mm diameter hand-held Edelman auger, capable of sampling to a maximum depth of 100 cm; the soil profile pit was excavated, using a spade to a maximum depth of 75 cm, sufficient to evaluate the *in situ* structure of the soil profile.
- 1.3.3 A total of 22 points, 19 cores and 3 pits were inspected. As shown on Figure 11.6, Volume 5, Document 5.4.11, the survey points were distributed across the Site, giving a survey density of more than one point per hectare in the areas of agricultural land for detailed ALC survey, and a less densely distributed to verify the existing ALC survey. This includes all of the conditions present on Site, above the recommendations set out in standard survey and ALC guidance and methodology. The purpose of the survey was to provide details of soil profile characteristics and to inform the ALC assessment.
- 1.3.4 To confirm the soil texture across the Site, ten soil samples were sent for analysis of particle size distribution by NRM Laboratories, accredited by UKAS to the internationally recognised standard for competence; ISO/IEC 17025.

Site description

- 1.3.5 The northern and central field were under a cereal crop which appeared to be wheat. The southern field was under a cover crop or oil seed rape.
- 1.3.6 A large hedgerow separates the southern field form the northern two, with smaller hedgerows between the roads and surrounding fields.

Soils

1.3.7 Soils from the Aberford (511a) association were identified during the site survey, the main variation on the site was soil depth, which varied from 30 to 100 cm. A description and image of the Aberford soil association is provided below.

Aberford (511a) Association

- 1.3.8 The topsoil, depth averaged 34 cm, with a range of clay loam textures from heavy to sandy, dark brown colour (10YR 3/3), with no mottling and a granular to subangular blocky structure. The soil was moderately developed with fine to medium ped sizes and a very friable to firm consistency. The stone content varied from 5 to 10 % of stoned larger than 2cm, with no stones larger than 6cm.
- 1.3.9 The subsoil depth averaged 62 cm, and ranged in texture from sandy silt loams to heavy silty clay loams, colours ranged from brown (7.5YR 4/4) to red in (5YR 4/6) and no mottling was observed. Biopores were observed in most areas within the subsoil and the structure was granular to subangular blocky with weak to moderate development. The ped size was fine to medium ped size and the consistence was very friable to friable. The stone content varied from 5 to 10 % of stones larger than 2 cm, with no stones larger than 6cm.
- 1.3.10 The soils in this series are all of Wetness Class 1, with no signs of waterlogging in any soil horizons.
- 1.3.11 Example photographs of this soil association are shown below.

Plate 3: Point 16 – Aberford Association – Wetness Class 1

Plate 4: Point 9 – Aberford Association – Wetness Class 1

Agroclimatic data

- 1.3.12 Agroclimatic data was taken from the nearest meteorological stations and interpolated to obtain site-specific values, see **Table 1.3**. This was then used to establish whether the agricultural land quality of the Site is limited by climate and, in conjunction with soil profile characteristics, wetness and droughtiness.
- 1.3.13 It was found that the climate did not poses a limitation to the ALC on Site.

Table 1.3 – Interpolated agroclimatic data for the Site

Measure (units)	Value	
Average annual rainfall (mm)	664	
Accumulated Temperature (0C)	1354	
Field Capacity Duration (FCD) (days)	154	
Moisture Deficit Wheat (mm)	99.4	
Moisture Deficit Potatoes (mm)	88.2	

Direct limitations to ALC grade

- 1.3.14 This section summarises the direct limitations to ALC grade at the Site (for detailed assessment of each Survey Point refer to **Annex 11C.1**).
- 1.3.15 There were direct limitations to ALC Grade from soil depth at points 2, 18, 19, which limited the ALC grade to Grade 2 with a soil depth between 45 and 60 cm, and at points 7, 11a, 13, 15, 20, 25, and 27 which limited the ALC to Subgrade 3a with a soil depth between 30 and 45 cm.
- 1.3.16 There was a direct limitation to ALC grade at the site where topsoil stoniness was 10% of stones greater than 2cm, which limited the ALC Grade to Grade 2.
- 1.3.17 There were no limitation to ALC grade due to site limitations (climate, gradient, risk of flooding, microrelief) or soil limitations (texture and structure, chemical).

Interactive limitations to ALC grade

- 1.3.18 This section summarises the interactive limitations (soil wetness, droughtiness, erosion) to ALC grade at the Site (for detailed assessment of each Survey Point refer to Appendix 1).
- 1.3.19 The combination of 154 Field Capacity Days, heavy silty clay loam texture with a weak development cause a limitation in the ALC grade at point 21 to Grade 2 for wetness. Wetness did not pose a limitation elsewhere on the site.
- 1.3.20 Droughtiness poses a limitation to the ALC grade for some points where the soil depth and heavy textured soil limits the available water for plants throughout the growing season. Calculations indicate that the droughtiness will be moderate for potatoes and moderate to high for wheat, resulting in a limitation to ALC Grade 2, Subgrade 3a and 3b at many points within the Site

1.4 Overall agricultural land classification

- 1.4.1 Grade boundaries were drawn based on field observations and ALC calculations from individual points, to create the final ALC mapping units. The ALC map comprises Grade 2, Subgrade 3a and Subgrade 3b agricultural land, with some areas of non-agricultural land. The main differentiation between gradings at the Site was the soil depth and droughtiness.
- 1.4.2 A description of each grade is provided below, a summary of the ALC gradings for the site is shown in **Table 1.4**, and geographically in **Figure 11.6**, **Volume 5**, **Document 5.4.11**.

Grade 2

1.4.3 Areas of land showing only slight limitations to agricultural production due to droughtiness primarily for wheat, and topsoil stoniness of 10% greater than 2 cm.

Subgrade 3a

1.4.4 Areas of land with some limitations to agricultural production due to droughtiness for wheat and potatoes.

Subgrade 3b

1.4.5 Areas of land with moderate limitations to agricultural production due to droughtiness, for wheat and potatoes, primarily as a limitation due to reduced soil depth.

Non-agricultural

1.4.6 Land not used for agricultural production. A portion of the land within the survey boundary in the eastern field is now used for conifer plantation and is not in agricultural use. There is also a portion of the Survey area along the southern boundary thar is mixed woodland and is not used for agriculture.

Table 1.4 – Summary of Agricultural Land Classification at the Site

ALC or other land category	Area (ha)	Percentage (%)
Grade 1 (excellent)	0.0	0.0
Grade 2 (very good)	2.31	10.98
Subgrade 3a (good)	10.41	49.50
Subgrade 3b (moderate)	7.09	33.71
Grade 4 (poor)	0.0	0.0
Grade 5 (very poor)	0.0	0.0
Non-agricultural	1.22	5.80
Total	21.03	100

1.5 Summary and Conclusions

- 1.5.1 The agricultural land within the survey boundary is made up of Grade 2 (very good quality, 2.31 ha, 10.98 %), Subgrade 3a (good quality, 10.41 ha, 49.50%) and Subgrade 3b (moderate quality, 7.09 ha, 33.71 %) agricultural land. The main differentiation between gradings at the Site was the degree of droughtiness for wheat and potatoes due to soil depth. A small area of non-agricultural land (1.22 ha, 5.80 %) is present where conifer plantation is present within the eastern field, and woodland in an area along the southern boundary.
- 1.5.2 The proposed location of the CSEC and access roads for the Project would be located on an area of Grade 2, Subgrade 3a and Subgrade 3b agricultural land.
- 1.5.3 The soils in the survey boundary are of a medium to heavy clay loam texture where occasional sandy loams are present with heavy clays and silty clays of the Aberford (511a) soil association.

Page intentionally blank

Annex 11C.1 Soil Survey Record and ALC Breakdown

Survey point number corresponds with the numbers on **Figure 11.1**, **Volume 5**, **Document 5.4.11** and in the other Annexes.

Page intentionally blank

Soil Survey Record and ALC Calculations

Legend for non-self-explanatory terms:

Horizons - number of different horizons identified within the profile

Type - type of sample, auger core or soil profile pit dug using a spade

Depth - depth to the bottom of the (horizon number) horizon in cm

Texture - C - clay, ZC - silty clay, SC - sandy clay, CL - clay loam, SCL - sandy clay loam, ZCL - silty clay loam, SL - sandy loam, LS - loamy sand, S - sand; CL and ZCL textures are subdivided into medium (M) and heavy (H) classes according to clay content, as follows: M medium (less than 27 % clay), H heavy (27-35 % clay); F, M and C refer to fine, medium and coarse, respectively, and are subdivisions of S, LS, SL, and SZL textures; O - organic, P - peat or peaty, HP - humified (highly decomposed peat), FP - fibrous peat, SFP - semi-fibrous peat; MZ - marine light silts Matrix (main) colour - dominant colour of the soil; Hue - Munsell colour hue; Value - Munsell colour value; Chroma - Munsell colour chroma Mottling - spots and blotches of different colour than the dominant matrix colour **Ped faces** - surfaces of the primary soil fragments into which the soil naturally breaks up upon excavating FeMn - ferri-manganifeours concertions **Biopores** - 'yes' if >0.5 % biopores greater than 0.5 mm diameter present (by area) Stones > 2 cm up to % - maximum percentage of 2 - 6 cm diameter stones **Stones > 6 cm up to %** - maximum percentage of > 6 cm diameter stones Type - H - All hard rocks or stones (those which cannot be scratched with a finger nail); SS - Soft, medium or coarse grained sandstones; SIM - Soft 'weathered' igneous or metamorphic rocks or stones; SL - Soft oolitic or dolomitic limestones; SFS - Soft fine-grained sandstones; SAZ - Soft, argillaceous or silty rocks or stones; CH - Chalk or chalk stones; GRH - Gravel¹ with non-porous (hard) stones; GRS - Gravel¹ with porous stones (mainly soft stone types listed); 1 - Gravel with at least 70% rounded stones by volume Structure type - SG - single grain; GR - granular; SAB - subangular blocky; AB - angular blocky; PR - prismatic; PL - platy; MAS - massive **Dev** - Development, how well the structure is developed; W - weak; M - moderate; S - strong Consistence - Soil consistence (strength); L - loose; VFR - very friable; FR - friable; FIR - firm; VFIR - very firm; EXFIR - extremely firm; EXHD - extremely hard **Gley** - depth to gleying

SPL - depth to slowly permeable layer

Wetness Class - classification of the soil according to the depth and duration of waterlogging in the soil profile, the higher the class, the longer and at the shallower depth the soil is wet

Overall ALC - this part of the table combines results of the classification for each of the limitations

	Soil profile descriptions Soil Soil						Matri	x (main)	colour		Peat	-specific pi	operties		Mottling				
Survey point	Туре	Grad- ient	distur- bed or	Horizon	Depth	Texture	Hue		Chroma	Von	Water content	Fine fibre content	Coarse	Wood remains	Abundan-	Hue	Value	Chroma	
point		lent	resto- red				пие	value	Chroma	Post	(B)	(F)	content (R)	(W)	ce up to %	nue	value	Chroma	
2	Core	1	no	1 2 3 4 5		MCL	10YR	3					n/a	n/a		0			
3	Core	7	no	1 2 3 4 5	91	MCL HZCL	10YR 7.5YR	3			n/a n/a			n/a n/a		0 0			
4	Core	0	no	1 2 3 4 5	30 60		10YR 7.5YR	3 4		n/a n/a	n/a n/a			n/a n/a		0 0			
5	Core	2	no	1 2 3 4 5	30 95	SCL MSL	10YR 5YR	3			n/a n/a	n/a n/a		n/a n/a	0 0	0 0			
7	Core	0	no	1 2 3 4 5	40		10YR 7.5YR	3 4			n/a n/a			n/a n/a		0 0			
9a	Pit	0	no	1 2 3 4 5	30 80		10YR 5YR	3 4		n/a n/a	n/a n/a			n/a n/a		0 0			
9	Core	0	no	1 2 3 4 5	50 90		10YR 5YR	3			n/a n/a			n/a n/a	0 0	0 0			
10	Pit	0	no	1 2 3 4 5	30 60	SCL MSZL	10YR 5YR	3		n/a n/a	n/a n/a			n/a n/a		0 0			
11a	Pit	0	no	1 2 3 4 5	30	MCL	10YR	3	3	n/a	n/a	n/a	n/a	n/a	0	0	0	0	
11	Core	0	no	1 2 3 4 5	35 65	MCL SCL	10YR 10YR	3			n/a n/a			n/a n/a		0 0			
13	Core	0	no	1 2 3 4 5	35	MCL	10YR	3	3	n/a	n/a	n/a	n/a	n/a	0	0	0	0	
15	Core	1	no	1 2 3 4 5	25 42	MCL MCL	10YR 10YR	3 3		n/a n/a	n/a n/a			n/a n/a		0 0			
16	Core	0	no	1 2 3 4 5	28 63	MCL MCL	10YR 10YR	3 6						n/a n/a		0 0			
18	Core	0	no	1 2 3 4 5	32 47	MCL MCL	10YR 7.5YR							n/a n/a		0 0			
19	Core	0	no	1 2 3 4 5	43 54	MCL MCL	10YR 10YR	3						n/a n/a		0 0			

	Soil profile d		scriptions continued Ped faces Stones and rocks Structure														
Survey point	Colour different to matrix	Hue	Value	Chroma	FeMn up to %	Biopo- res	> 2 cm up to %	> 6 cm up to %	Туре	Туре	Deve- lop- ment	Ped size	Consis- tence	Calca- reous	Gley- ing	SPL	Notes
2	no	n/a	n/a	n/a	0	yes	10	0			Μ			no		NO	Refused on stone.
3	no no	n/a n/a	n/a n/a				5			SAB SAB	M W			no no	NO NO	NO NO	-
4	no no	n/a n/a	n/a n/a		0 0		10 10			SAB GR	M W			no no	NO NO	NO NO	Weathered bedrock at base.
5	no no	n/a n/a	n/a n/a				10 5	0 0		SAB SAB	M W			no no	NO NO	NO NO	Rock at base.
7	no no	n/a n/a	n/a n/a	n/a n/a	0 0		10 5	0 0		SAB SAB	M W			no no	NO NO	NO NO	Parent material from 40cm.
9a	no no	n/a n/a	n/a n/a		0 2		10 5	0 0		SAB SAB	M			no no	NO NO	NO NO	
9	no no	n/a n/a	n/a n/a		0 0		10 5	0 0		SAB GR	M W	F		no no	NO NO	NO NO	Clay layer from 85- 90cm, firm.
10	no no	n/a n/a	n/a n/a	n/a n/a	0 2		10 5			SAB SAB	M			no no	NO NO	NO NO	
11a	no	n/a	n/a	n/a	0	yes	10	0	Н	SAB	М	M	VFR	no	NO	NO	Shallow topsoil very thin layer of subsoil in some locations but limited.
11	no no	n/a n/a	n/a n/a		0 2		5	0 0		SAB SAB	M W	M F		no no	NO NO	NO NO	50-60cm subsoil and white wesathered bedrock,calcerous.
13	no	n/a	n/a	n/a	0	yes	10	5	Н	SAB	Μ	F	VFR	no	NO	NO	Parent material at base.
15	no no	n/a n/a	n/a n/a		2 0	yes yes	5			SAB SAB	M M			no no	NO NO	NO NO	Parent material from 40cm.
16	no no	n/a n/a	n/a n/a				5 5	0		SAB SAB	M			no no	NO NO	NO NO	Bedrock at 63cm.
18	no no	n/a n/a	n/a n/a		0 0		5 0	0 0		SAB GR	M W			no no	NO NO	NO NO	Refused on rock.
19	no no	n/a n/a	n/a n/a		0		5	0		GR SAB	M W	F		no no	NO NO	NO NO	-

	ALC for are	as represen	ted by indiv	idual survey	points		n	ſ		ſ	n	1	
Survey point	Wetness class	Climate	Gradient	Summer flood risk	Winter flood risk	Topsoil texture	Soil Depth	Topsoil stoniness	Wetness	Droughti- ness	Other (see "Limited by" column)	ALC Grade	Limited by
2	1	1	1	1	1	1	2	2	1	3b	1	3b	Droughti- ness
3	1	1	1	1	1	1	1	1	1	2	1	3b	Pattern
4	1	1	1	1	1	1	1	2	1	3a	1	3a	Droughti- ness
5	1	1	1	1	1	1	1	2	1	1	1	3a	Pattern
7	1	1	1	1	1	1	3a	2	1	3b	1	3a	Pattern
9a	1	1	1	1	1	1	1	2	1	1	1	2	Topsoil stoniness
9	1	1	1	1	1	1	1	2	1	2	1	2	Topsoil stoniness Droughti- ness
10	1	1	1	1	1	1	1	2	1	3a	1	3a	Droughti- ness
11a	1	1	1	1	1	1	3a	2	1	4	1	3b	Pattern
11	1	1	1	1	1	1	1	1	1	2	1	2	Droughti- ness
13	1	1	1	1	1	1	3a	2	1	3b	1	3b	Droughti- ness
15	1	1	1	1	1	1	3a	1	1	3b	1	3b	Droughti- ness
16	1	1	1	1	1	1	1	1	1	2	1	2	Droughti- ness
18	1	1	1	1	1	1	2	1	1	3a	1	3a	Droughti- ness
19	1	1	1	1	1	1	2	1	1	3a	1	За	Droughti- ness

	Soil prof	Soil profile descriptions																
			Soil				Matri	k (main)	colour		Peat	-specific pr	operties			Mottl	ing	
Survey point	Туре	Grad- ient	distur- bed or resto- red	Horizon		Texture	Hue		Chroma	Von Post	Water content (B)	Fine fibre content (F)	Coarse fibre content (R)	Wood remains (W)	Abundan- ce up to %	Hue	Value	Chroma
20	Core	0	no	1 2 3 4 5	28 42	MCL MCL	10YR 7.5YR	3 6		n/a n/a	n/a n/a		n/a n/a	n/a n/a		0 0	0 0	
21	Core	0	no	1 2 3 4 5	32 67	HCL HZCL	10YR 7.5YR	3 6	6	n/a	n/a n/a	n/a		n/a n/a	0	0 0	0 0	
22	Core	0	no	1 2 3 4 5	20 33 100	MCL MCL MCL	10YR 5YR 10YR	3 3 4		n/a n/a n/a	n/a n/a n/a	n/a		n/a n/a n/a	0	0 0 0	0 0 0	0
23	Core	0	no	1 2 3 4 5	34	MCL	10YR	3	3	n/a	n/a	n/a	n/a	n/a	0	0	0	0
25	Core	0	no	1 2 3 4 5	40	MCL	10YR	3	3	n/a	n/a			n/a		0	0	0
27	Core	0	no	1 2 3 4 5	25	MCL	10YR	3	3	n/a	n/a	n/a	n/a	n/a	0	0	0	0

	•	Ped fa	ces				Stor	nes and re	ocks		Structure	5					
Survey point	Colour different to matrix	Hue	Value	Chroma	FeMn up to %	Biopo- res		> 6 cm up to %	Туре	Туре	Deve- lop- ment	Ped size	Consis- tence	Calca- reous	Gley- ing	SPL	Notes
20	no no	n/a n/a			0 0		5 5	0 0		SAB SAB	M W			no no	NO NO	NO NO	Refused on rock.
21	no no	n/a n/a			0 2		5	0 0		SAB GR	M W			no no	NO NO	NO NO	
22	no no no	n/a n/a n/a	n/a	n/a	0	yes	5 0 5		n/a	SAB GR GR	M W W	F		no no no	NO NO NO	NO NO NO	
23	no	n/a	n/a	n/a	0	yes	5	0	SL	SAB	М	F	FIR	no	NO	NO	Refused on rock.
25	no	n/a	n/a	n/a	0	yes	10	0	H	GR	М	F	VFR	no	NO	NO	Subsoil just coming in a base, refused on rock.
27	no	n/a	n/a	n/a	0	yes	5	0	H	GR	М	F	VFR	no	NO	NO	Very stony at base.

	ALC for are	as represen	ted by indiv	idual surve	y points								
Survey point	Wetness class	Climate	Gradient	Summer flood risk	Winter flood risk	Topsoil texture	Soil Depth	Topsoil stoniness	Wetness	Droughti- ness	Other (see "Limited by" column)		Limited by
20	1	1	1	1	1	1	3a	1	1	3b	1	3b	Droughti- ness
21	1	1	1	1	1	1	1	1	2	2	1	За	Pattern
22	1	1	1	1	1	1	1	1	1	1	1	3a	Pattern
23	1	1	1	1	1	1	3a	1	1	3b	1	3b	Droughti- ness
25	1	1	1	1	1	1	3a	2	1	3b	1	3b	Droughti- ness
27	1	1	1	1	1	1	3b	1	1	4	1	3b	Pattern

Annex 11C.2 Droughtiness Calculations

Survey point number corresponds with the numbers on **Figure 11.1**, **Volume 5**, **Document 5.4.11**, and in the other Annexes.

Page intentionally blank

Droughtiness Calculations

Abbreviations for non self-explanatory terms:

TAv – Total amount of soil water available to plants, considered to be the volumetric soil water content between 0.05 and 15 bar suction or, in case of sands and loamy sands, 0.10 and 15 bar suction. These suctions approximate to the conditions of field capacity and wilting point (when the plants can extract no more moisture from the soil).

EAv – Easily available water, held in the soil between 0.05 and 2.0 bar suction, used for calculating cereal available water below 50 cm depth where root systems are less well developed, and the plant's ability to extract water is diminished.

Values of TAv and EAv are estimated for each horizon based on soil texture and structural condition according to the ALC guidelines (MAFF, 1988).

AP – crop adjusted available water capacity, a measure of the quantity of water held in the soil profile which can be taken up by a specific crop.

MD – the moisture deficit term used in the ALC droughtiness assessment is a crop-related meteorological variable which represents the balance between rainfall and potential evapotranspiration calculated over a critical portion of the growing season.

MB – moisture balance: MB=AP-MD, MB for wheat and potatoes determines limitation by droughtiness

				Data	inputs															Droughtine	ess calculat	tions										
	1	1	1	r		Av. wat	ter (soil)	Av. wate	r (stones)			1		г	AP wh	eat			-			1				AP	potatoes					Limited
Survey Point	Horizon	Horizon thickness	Texture		Structural condition	TAv %	EAv %	TAv %	EAv %	TAv/EAv	Start depth	End depth	Horiz. thickn.	TAv/EAv soil	% non stone	TAv/EAv stones	Stones %	AP whea	at	AP(wheat) -MD(wheat)	Start depth	Er dep	oth t	hickn.	TAv top/su soil	stone %	stones	itone %	AP potato		otato) ootato)	to ALC grade
	1	45	MCL	10	GOOD	18		1.0	0.5	TAv EAv	0	45 45	45 0	18 0	90 90	1	10 10	734 0			0	4	5	45	18	90	1	10	734			
	2									TAv	45	45	0	0	100	0	0	0			45	4	5	0	0	100	0	0	0			
	3									EAv TAv	45 45	45 45	0	0	100 100	0	0	0	70	26	45	4	5	0	0	100	0	0	0.			21
2	4									EAv TAv	45 45	45 45	0	0	100	0	0	0	73	-26		4		25						3 .	15	3b
	4									EAv	45	45	0	0	100 100	0	0	0			45	4	5	25	0	100	0	0	0			
	5									TAv EAv	45 45	45 45	0	0	100 100	0	0	0			45	4	5	0	0	100	0	0	0			
	1	53	MCL	5	GOOD	18		1.0	0.5	TAv	0	53	50	18	95	1	5	858			0	5	3	53	18	95	1	5	909			
	2	38	HZCL	5	GOOD	21	12	1.0	0.5	EAv TAv	0 53	53 91	3 0	0 21	95 95	1	5	0			53	9	1	17	21	95	1	5	340			
		50	TIZCE		0000			1.0	0.5	EAv	53	91	38	12	95	1	5	434			33		±	1/	21	55		<u> </u>				
3	3									TAv EAv	91 91	91 91	0	0	100 100	0	0	0	129	30	91	9	1	0	0	100	0	0	0 1	25	7	2
	4									TAv	91	91	0	0	100	0	0	0			91	9	1	0	0	100	0	0	0			
	5									EAv TAv	91 91	91 91	0	0	100 100	0	0	0			91	9	1	0	0	100	0	0	0			
	1	20	MCL	10	GOOD	18		1.0	0.5	EAv TAv	91	91 30	0 30	0 18	100 90	0	0 10	0 489			0	2	0	30	18	90	1	10	489			
	1	30								EAv	0	30	0	0	90	1	10	0			0	5	0	50			1	10				
	2	30	MZCL	10	GOOD	21	12	1.0	0.5	TAv EAv	30 30	60 60	20 10	21 12	90 90	1	10 10	380 109			30	6	0	30	21	90	1	10	570			
4	3									TAv	60	60	0	0	100	0	0	0	98	-2	60	6	0	0	0	100	0	0	0 1	06	.8	3a
	4									EAv TAv	60 60	60 60	0	0	100 100	0	0	0		-	60	6	0	10	0	100	0	0	0		-	
										EAv	60	60	0	0	100	0	0	0														
	5									TAv EAv	60 60	60 60	0	0	100 100	0	0	0			60	6	0	0	0	100	0	0	0			
	1	30	SCL	10	GOOD	17		1.0	0.5	TAV	0	30	30 0	17 0	90	1	10	462 0			0	3	0	30	17	90	1	10	462			
	2	65	MSL	5	GOOD	17	13	1.0	0.5	EAv TAv	30	30 95	20	17	90 95	1	10 5	324			30	9	5	40	17	95	1	5	648			
	3									EAv TAv	30 95	95 95	45 0	13 0	95 100	1	5	557 0			95	9	5	0	0	100	0	0	0			
5										EAv	95	95	0	0	100	0	0	0	134	35				Ű					1	11	3	1
	4									TAv EAv	95 95	95 95	0	0	100 100	0	0	0			95	9	5	0	0	100	0	0	0			
	5									TAv	95	95	0	0	100	0	0	0			95	9	5	0	0	100	0	0	0			
	1	30	MCL	10	GOOD	18		1.0	0.5	EAv TAv	95 0	95 30	0 30	0 18	100 90	0	0 10	0 489			0	3	0	30	18	90	1	10	489			
	2	10	LMS	5	GOOD	12	9	1.0	0.5	EAv TAv	0 30	30 40	0 10	0	90 95	1	10	0 115			30	1	0	10	12	95	1	5	115			
	2	10	LIVIS		GOOD	12		1.0	0.5	EAv	30	40	0	9	95	1	5	0						10	12	1		5	115			
7	3									TAv EAv	40 40	40 40	0	0	100 100	0	0	0	60	-39	40	4	0	0	0	100	0	0	0 (0 .	28	3b
	4									TAv	40	40	0	0	100	0	0	0			40	4	0	30	0	100	0	0	0			
	5									EAv TAv	40 40	40 40	0	0	100 100	0	0	0			40	4	0	0	0	100	0	0	0			
	1	30	MZCL	10	GOOD	19		1.0	0.5	EAv TAv	40 0	40 30	0 30	0 19	100 90	0	0 10	0 516			0	2	0	30	19	90	1	10	516			
	1	50		10					0.5	EAv	0	30	0	0	90	1	10	0			0	5	0	50	19	90	Ŧ	10	510			
	2	50	MCL	5	GOOD	21	14	1.0	0.5	TAv EAv	30 30	80 80	20 30	21 14	95 95	1	5	400 400			30	8	0	40	21	95	1	5	800			
9a	3									TAv	80	80	0	0	100	0	0	0	132	32	80	8	0	0	0	100	0	0	0 1	32	3	1
	4									EAv TAv	80 80	80 80	0	0	100 100	0	0	0			80	8	0	0	0	100	0	0	0			
										EAv	80	80	0	0	100	0	0	0							-			-				
	5									TAv EAv	80 80	80 80	0	0	100 100	0	0	0			80	8	U	0	0	100	0	0	0			
	1	50	SCL	10	GOOD	17		1.0	0.5	TAv EAv	0	50 50	50 0	17 0	90 90	1	10 10	770			0	5	0	50	17	90	1	10	770			
	2	40	MSL	5	GOOD	17	13	1.0	0.5	TAv	50	90	0	17	95	1	5	0			50	9	0	20	17	95	1	5	324			
	3									EAv TAv	50 90	90 90	40	13 0	95 100	1	5	495			90	9	0	0	0	100	0	0	0			
9	5									EAv	90	90	0	0	100	0	0	0	127	27			•	Ű					1	09	1	2
	4									TAv EAv	90 90	90 90	0	0	100 100	0	0	0			90	9	0	0	0	100	0	0	0			
	5									TAv	90	90	0	0	100	0	0	0			90	9	0	0	0	100	0	0	0			
L										EAv	90	90	0	0	100	0	0	0														

				Data	inputs															Droughtine	ess calculat	tions									
				1		Av. wat	ter (soil)	Av. wate	r (stones)					1	AP wh	eat						1				AP p	otatoes				Limited
Survey Point	Horizon	Horizon thickness	Texture		Structural condition	TAv %	EAv %	TAv %	EAv %	TAv/EAv	Start depth	End depth	Horiz. thickn.	TAv/EAv soil	% non stone	TAv/EAv stones	Stones %	AP whe	at	AP(wheat) -MD(wheat)	Start depth	Er dep	oth thie	ckn.	v top/sub soil	non- stone %	TAv stones Stone		toes	AP(potato) -MD(potato)	to ALC grade
	1	30	SCL	10	GOOD	17		1.0	0.5	TAv EAv	0	30 30	30 0	17 0	90 90	1	10 10	462 0			0	3	0 3	30	17	90	1 10	462			
	2	30	MSZL	5	MODERATE	17	11	1.0	0.5	TAv	30	60	20	17	95	1	5	324			30	6	0 3	30	17	95	1 5	486			
	3									EAv TAv	30 60	60 60	10 0	11 0	95 100	1	5	105 0			60	6	0	0	0	100	0 0	0			
10										EAv	60	60	0	0	100	0	0	0	89	-10									95	7	За
	4									TAv EAv	60 60	60 60	0	0	100 100	0	0	0			60	6	0 1	LO	0	100	0 0	0			
	5									TAv EAv	60 60	60 60	0	0	100 100	0	0	0			60	6	0	0	0	100	0 0	0			
	1	30	MCL	10	GOOD	18		1.0	0.5	TAv	0	30	30	18	90	1	10	489			0	3	0 3	30	18	90	1 10	489			
	2									EAv TAv	0 30	30 30	0	0	90 100	1	10 0	0			30	3	0	0	0	100	0 0	0			
										EAv	30	30	0	0	100	0	0	0													
11a	3									TAv EAv	30 30	30 30	0	0	100 100	0	0	0	49	-51	30	3	0	0	0	100	0 0	0	49	-39	4
	4									TAv	30	30	0	0	100	0	0	0			30	3	0 4	10	0	100	0 0	0			
	5									EAv TAv	30 30	30 30	0	0	100 100	0	0	0			30	3	0	0	0	100	0 0	0			
	1	35	MCL	5	GOOD	18		1.0	0.5	EAv TAv	30 0	30 35	0 35	0 18	100 95	0	0	0 600			0	3	5 3	35	18	95	1 5	600			
										EAv	0	35	0	0	95	1	5	0													
	2	30	SCL	5	GOOD	19	14	1.0	0.5	TAv EAv	35 35	65 65	15 15	19 14	95 95	1	5	272 200			35	6	5 3	30	19	95	1 5	543			
11	3									TAv EAv	65 65	65 65	0	0	100 100	0	0	0	107	8	65	6	5	0	0	100	0 0	0	114	26	2
	4									TAv	65	65	0	0	100	0	0	0			65	6	5	5	0	100	0 0	0			
	5									EAv TAv	65 65	65 65	0	0	100 100	0	0	0			65	6	5	0	0	100	0 0	0			
		25		45	6000	- 40		1.0		EAv	65	65	0	0	100	0	0	0							10						
	1	35	MCL	15	GOOD	18		1.0	0.5	TAv EAv	0	35 35	35 0	18 0	85 85	1	15 15	541 0			0	3	5 3	35	18	85	1 15	541			
	2									TAv EAv	35 35	35 35	0	0	100 100	0	0	0			35	3	5	0	0	100	0 0	0			
13	3									TAv	35	35	0	0	100	0	0	0	54	-45	35	3	5	0	0	100	0 0	0	54	-34	3b
	4									EAv TAv	35 35	35 35	0	0	100 100	0	0	0			35	3	5 3	35	0	100	0 0	0			
	5									EAv TAv	35 35	35 35	0	0	100 100	0	0	0			35	2	5	0	0	100	0 0	0			
										EAv	35	35	0	0	100	0	0	0													
	1	25	MCL	5	GOOD	18		1.0	0.5	TAv EAv	0	25 25	25 0	18 0	95 95	1	5	429 0			0	2	5 2	25	18	95	1 5	429			
	2	17	MCL	5	GOOD	21	14	1.0	0.5	TAv EAv	25 25	42 42	17 0	21 14	95 95	1	5	340			25	4	2 1	17	21	95	1 5	340			
15	3									TAv	42	42	0	0	100	0	0	0	77	-23	42	4	2	0	0	100	0 0	0	77	-11	3b
	4									EAv TAv	42 42	42 42	0	0	100 100	0	0	0			42	4	2 2	28	0	100	0 0	0			
	5			1						EAv TAv	42 42	42 42	0	0	100 100	0	0	0			42	4	2	0		100	0 0	0			
	5									EAv	42	42	0	0	100	0	0	0			42	4	2	0	U	100	0 0	U			
	1	28	MCL	5	GOOD	18		1.0	0.5	TAv EAv	0	28 28	28 0	18 0	95 95	1	5 5	480 0			0	2	8 2	28	18	95	1 5	480			
	2	35	MCL	5	GOOD	21	14	1.0	0.5	TAv	28	63	22	21	95	1	5	440			28	6	3 3	35	21	95	1 5	700			
	3									EAv TAv	28 63	63 63	13 0	14 0	95 100	1	5	173 0	4.00	10	63	6	3	0	0	100	0 0	0		20	
16	4									EAv TAv	63 63	63 63	0	0	100 100	0	0	0	109	10	62	6	2	-	0	100	0 0	0	118	30	2
	4									EAv	63	63	0	0	100	0	0	0			63	6	3	7	U		0 0	0			
	5									TAv EAv	63 63	63 63	0	0	100 100	0	0	0			63	6	3	0	0	100	0 0	0			
	1	32	MCL	5	GOOD	18		1.0	0.5	TAv	0	32	32	18	95	1	5	549			0	3	2 3	32	18	95	1 5	549			
	2	15	MCL	0	GOOD	21	14			EAv TAv	0 32	32 47	0 15	0 21	95 100	1	5	0 315			32	4	7 1	15	21	100	0 0	315			
	2									EAv TAv	32 47	47 47	0	14 0	100 100	0	0	0			47	4		0	0	100	0 0	0			
18	3									EAv	47	47	0	0	100	0	0	0	86	-13				•					86	-2	За
	4									TAv EAv	47 47	47 47	0	0	100 100	0	0	0			47	4	7 2	23	0	100	0 0	0			
	5									TAv	47	47	0	0	100	0	0	0			47	4	7	0	0	100	0 0	0			
										EAv	47	47	0	0	100	0	0	0													

					Data	inputs														Droughti	ness calcula	ations										
	i		1	1	1	1	Av. wat	ter (soil)	Av. wate	r (stones)						AP wh	neat					1			1	AP	potatoes					Limited
1 1 1 0			thickness		Stones %	condition	%		%	%			depth	thickn.	soil	stone		Stones %			depth	de	epth th	hickn.	soil	stone %				oes	AP(potato) -MD(potato)	to ALC grade
1 1	ł	1	43	MCL	5	GOOD	18		4.0	3.0		-					4	-			0	4	43	43	18	95	4	5	744			
□ □	ł	2	11	MCL	5	GOOD	21	14	1.0	0.5	TAv	43	54		21	95	1		140		43	5	54	11	21	95	1	5	220			
i i <	19	3									TAv	54	54	0	0	100	0	0	0 94	-6	54	5	54	0	0	100	0	0	0	96	8	3a
5 5		4																	0		54	5	54	16	0	100	0	0	0		-	
Image:	ł	5															-				54		54	0	0	100	0	0	0			
1 1	┝────		20	MCI		C00D	10		1.0	0.5	EAv	54	54	0	0	100	-		0	_	0			20	10			- -	400			
1 1	ł	_			5						EAv	0	28	0	0	95	1	5	0		0		28	28	18			5				
1 1 <th1< th=""> 1 1 1</th1<>	ł	2	14	MCL	5	GOOD	21	14	1.0	0.5							1	5			28	4	42	14	21	95	1	5	280			
1 1	20	3									TAv	42				100			- /6	-23	42	4	42	0	0	100	0	0	0	76	-12	3b
1 1	ł	4									TAv	42	42	0	0	100	0	0	0		42	4	42	28	0	100	0	0	0			
1 3	ł	5									TAv	42	42	0	0	100	0	0	0		42	4	42	0	0	100	0	0	0			
1 3 100 5 5000 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0		1	32	HCL	5	GOOD	18		4.0	3.0								0		+	0		32	32	18	95	4	5	554			
Image:	ł	2	35	HZCI	5	GOOD	21	12	10	0.5							~	÷			32	6	57	35	21	95		5	700			
Image:	ł		33	TIZEE	5	0000			1.0	0.5	EAv	32	67	17	12	95	1	5	194													
Image:	21										EAv	67	67	0	0	100	0	0	0 111	11				0	0		0			125	37	2
Image:	ł	4																			67	6	67	3	0	100	0	0	0			
1 200 MCL 5 6000 18 0 0 20 20 18 95 1 5 400 2 11 MCL 0 6000 21 14 0 20 13 21 20 13 40 5 40 2 11 MCL 0 6000 21 14 0 10 10 21 21 21 20	ł	5																			67	6	67	0	0	100	0	0	0			
2 3 MC 0 6000 7 4 7 7 70 70 70	1	1	20	MCL	5	GOOD	18		1.0	0.5	TAv	0	20	20	18	95	1	5	343		0	12	20	20	18	95	1	5	343			
1 0 0 0 0 1 1 0 0 1 0	ł	2	13	MCL	0	GOOD	21	14			TAv	20	33	13	21	100	0	0	273		20		33	13	21	100	0	0	273			
4 -	22	3	67	MCL	5	GOOD	21	14	1.0	0.5									240	62	33	1	.00	37	21	95	1	5	740	120	47	
Image:	22	4																	666	63	100	1	00	0	0	100	0	0		130	47	1
Image: mage:	ł	-									EAv	100	100			100	-	0	-					0	-			0				
1 1	L										EAv	100	100	0	0	100	0	0	0									0				
1 1	ł	1	34	MCL	5	GOOD	18		4.0	3.0		-					4	5			0		34	34	18	95	4	5	588			
13 1	ł	2																			34	3	34	0	0	100	0	0	0			
4	23	3									TAv	34	34	0	0	100	0	0		-41	34		34	0	0	100	0	0	0	59	-29	3b
5 i	ł	4									TAv	34	34	0	0	100	0	0	0		34		34	36	0	100	0	0	0			
1 40 MCL 10 GOOD 18 1.0 0.5 TAV 0 40 11 10 652 2 - - - - - - - - 0 40 0 0 90 1 10 652 2 - <td>ł</td> <td>5</td> <td></td> <td>34</td> <td></td> <td>34</td> <td>0</td> <td>0</td> <td>100</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td>	ł	5																			34		34	0	0	100	0	0	0			
Image:		1	40	MCL	10	GOOD	18		1.0	0.5											0	4	40	40	18	90	1	10	652			
Image:	ł										EAv	0	40	0	0	90	-	10	0		40											
1 1	ł										EAv	40	40	0	0	100	0	0	0					-								
Image: Normal Sector	25	3																		-34	40	4	40	0	0	100	0	0	0	65	-23	3b
5	ł	4													-		-				40	4	40	30	0	100	0	0	0			
1 25 MCL 5 GOOD 18 1.0 0.5 TAV 0 25 1 5 429 2 0	ł	5									TAv	40	40	0	0	100	0	0	0		40	4	40	0	0	100	0	0	0			
2		1	25	MCL	5	GOOD	18		1.0	0.5	TAv	0	25	25	18	95	1	5	429		0		25	25	18	95	1	5	429			
Image: Normal System 1 Image: Normal System 3 I	ł	2									TAv	25	25	0	0	100	0	0	0		25		25	0	0	100	0	0	0			
4 0 0 EAv 25 25 0 0 100 0 0 0 77 25 25 45 0 100 0 0 0 100 0 0 100 100 0 100 <td< td=""><td>1.</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>EAv</td><td>25</td><td>25</td><td>0</td><td></td><td>100</td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>25</td><td>0</td><td>-</td><td></td><td>0</td><td>0</td><td>0</td><td></td><td></td><td></td></td<>	1.	3									EAv	25	25	0		100			0				25	0	-		0	0	0			
	27										EAv	25	25	0	0	100	0	0	0 43	-57										43	-45	4
	ł										EAv	25	25	0	0	100	0	0	0								U	Ű				
5	ł	5															-	-	0		25	1 2	25	0	0	100	0	0	0			

Annex 11C.3 Laboratory Results

Sample nomenclature:

NG-YG-SNS "survey point no" "Horizon number"

Survey point number corresponds with the numbers on **Figure 11.1**, **Volume 5**, **Document 5.4.11**, and in the other Annexes.

Page intentionally blank

C 1 ⁻ N N		1448	Client :	YORKSHIRE GRE	EEN
	Please quote the above code for all	lenquiries		Laboratory Refe	rence
Distributor	: CA10496		Card	Number	71907/22
Local Rep	: B THOMAS			Date Receive	d 06-Sep-22
Telephone	:			Date Reported	
Sample Matrix	: Agricultural Soil				

SOIL ANALYSIS REPORT

Laboratory		Field Details			Index		mg/l	(Availa	ble)
Sample Reference	No.	Name or O.S. Reference with Cropping Details	Soil pH	Ρ	к	Mg	Ρ	к	Mg
		P10 H2 TADCASTER							
381759/22	2	No cropping details given	8.0	0	0	5	<2.5	48	318
381760/22	3	P10 H1 TADCASTER	8.0	2	4	5	15.8	00	290
		No cropping details given	0.0	2	1	5	15.8	99	290

If general fertiliser and lime recommendations have been requested, these are given on the following sheets.

The analytical methods used are as described in DEFRA Reference Book 427

The index values are determined from the AHDB Fertiliser Recommendations RB209 9th Edition.

Released by Sandy Cameron

On behalf of NRM

Date 16/09/22

MICRO NUTRIENT REPORT

DATE

16th September 2022

SAMPLES FROM YORKSHIRE GREEN

WARDELL ARMSTRONG LLP CITY QUADRANT 11 WATERLOO SQUARE NEWCASTLE UPON TYNE NE1 4DP



Reference: 71907/381759/22	Field Name: P10 H2 TADCASTER	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		2.8	1	OM level	data not ava	ilable for th	is crop	
Sand (2.00 - 0.063mm) %		42]		de o		Sola - Si Seri Pe	
Silt (0.063 - 0.002mm) %		41	1					
Clay (< 0.002mm) %		17	1					
Textural Classification	Sandy S	ilt Loam	2					

Reference: 71907/381760/22	Field Name: P10 H1 TADCASTER	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		3.6	1	OM level	data not ava	ilable for th	is crop	
Sand (2.00 - 0.063mm) %		53						
Silt (0.063 - 0.002mm) %		28						
Clay (< 0.002mm) %		19						
Textural Classification	Sandy Cl	ay Loam	2					

Notes (*)

- (1) NRM considers Organic soils to contain between 10-20% organic material with Peaty soils containing over 20%. The optimum ranges for Organic Matter which have been set are dependent on the soil type and the cropping but these must be viewed as guidance values only.
- (2) In calcareous soils the sand, silt and clay sized fractions are likely to contain particles of carbonate which may result in the incorrect classification of soil type.

DATE SAMPLES FROM	16th September 2022 YORKSHIRE GREEN	11	ELL ARMSTRONG LLP CITY QUADRANT WATERLOO SQUARE
SAMPLED BY	B THOMAS CA10496	NEV	WCASTLE UPON TYNE NE1 4DP
Report reference	71907/22		Tel: Fax:

Fertiliser Recommendations

The phosphate and potash recommendations shown below, are those required to replace the offtake and maintain target soil indices. The larger recommended applications for soils below target index will allow the soil to build up to this target index over a number of years. Not applying fertiliser to soils which are above target index will allow the soil to run down over a number of years to the target index.

The recommendation should be increased or decreased where yields are substantially more or less than that specified. The amount to apply can be calculated using the expected yield and values for the offtake of phosphate and potash per tonne of yield given in the RB209 9th edition. All recommendations are given for the mid-point of each Index.

Where a soil analysis value (as given for the mine point of each mode). of the recommendation given for the adjacent Index. Small adjustments of less than 10 kg/ha are generally not justified.

Efficient use of P and K is most likely to be achieved on soils that are well structured and enable good rooting.

For visual evaluation of soil structure (VESS), a score on 1 or 2 would be considered adequate.

Don't forget to deduct nutrients applied as organic manures.

For Nitrogen recommendations please refer to the RB209 9th edition or seek advice from an FACTS qualified adviser.

Target Indices: Arable, Forage, Grassland and Potato Crops: P Index 2, K Index 2-

(In rotations where most crops are Autumn-sown, soils are in good condition and P is applied annually, high index 1 can be an adequate target.)

Vegetables and Bulbs: P Index 3, K Index 2+

(If vegetables are only grown occasionally as part of an arable rotation, it would be most economic to target index 2 for arable and forage crops.)

Fruit Vines and Hops: P Index 2, K Index 2, Mg Index 2 (Note: Cider apples respond to K Index 3, Mg Index 3)

A lime recommendation is usually for a 20cm depth of cultivated soil or a 15cm depth of grassland soil. Where soil is acid below 20 cm and soils are ploughed for arable crops, a proportionately larger quantity of lime should be applied. However, if more than 10 t/ha is needed, half should be deeply cultivated into the soil and ploughed down, with the remainder applied to the surface and worked in.

For established grassland or other situations where there is no, or only minimal soil cultivation, no more than 7.5 t/ha of lime should be applied in one application. In these situations, applications of lime change the pH below the surface very slowly. Consequently, the underlying soil should not be allowed to become too acidic because this will affect the root growth and thus limit nutrient and water uptake, which will adversely affect yield.

Field Name / Ref / Soil Type P10 H2 TADCASTER 381759 / Medium	Last Crop / Next Crop Not Given / Not Given	Units/Acre Kg/Ha	P2O5	K2O	MgO	Lin T/Ac Te/Ha	ne (Arable) 0 0	(Grass) 0 0
Field Name / Ref / Soil Type P10 H1 TADCASTER 381760 / Medium	Last Crop / Next Crop Not Given / Not Given	Units/Acre Kg/Ha	P2O5	K2O	MgO	Lin T/Ac Te/Ha	ne (Arable) 0 0	(Grass) 0 0

Fertiliser recommendations are based on AHDB RB209 (Ninth Edition). If a nutrient is deficient and no recommendation is given, either no recommendation is given in RB209 or we have insufficient data to give a recommendation. Apply Lime to the nearest half Ton / Tonne. NRM is a UKAS accredited laboratory to ISO/IEC 17025

t: -

w:

C 1 N N		Client	: `	YORKSHIRE GREEM	N
	Please quote the above code for all e	enquiries		Laboratory Reference	28
Distributor	: CA10796	(Card I	-	923/22
Local Rep	: B THOMAS		1	Data Dagainad	00 0
Telephone	:			Date Received Date Reported	06-Sep-22 16-Sep-22
Sample Matrix	: Agricultural Soil				
	SOIL ANA	ALYSIS F	REP	PORT	
Laboratory	Field Details			Index	mg/l (Available)

Laboratory		Field Details			Index		mg/l (Available)		
Sample Reference	No.	Name or O.S. Reference with Cropping Details	Soil pH	Ρ	к	Mg	Р	к	Mg
-									
-									
381846/22	5	21 H2 TADCASTER				_			
	Ľ	No cropping details given	8.2	0	1	5	5.6	80	267
381847/22	6	21 H1 TADCASTER	7.9	2	3	6	19.8	275	111
		No cropping details given	7.9	2	3	0	19.0	215	411

If general fertiliser and lime recommendations have been requested, these are given on the following sheets.

The analytical methods used are as described in DEFRA Reference Book 427

The index values are determined from the AHDB Fertiliser Recommendations RB209 9th Edition.

Released by Sandy Cameron

On behalf of NRM

Date 16/09/22

NRM, Coopers Bridge, Braziers Lane, Bracknell, Berkshire RG42 6NS

w:

PAAG

t: ·

CI 11 NE NE	ARDELL ARMSTRONG LLP TY QUADRANT WATERLOO SQUARE EWCASTLE UPON TYNE E1 4DP	H448	Client :	YORKSHIRE G	REEN		
	Please quote the above code for	Laboratory Reference					
Distributor	: CA10796		Card	d Number 71923/22		/22	
Local Rep	: B THOMAS			Date Recei	ved	06-Sep-22	
Telephone	:			Date Repor		16-Sep-22	
Sample Matrix	: Agricultural Soil						

SOIL ANALYSIS REPORT

Laboratory		Field Details			Index		mg/l (Availab	ble)	
Sample Reference	No.	Name or O.S. Reference with Cropping Details	Soil pH	Р	К	Mg	Р	к	Mg
381848/22	7	3 H2 TADCASTER No cropping details given	7.9	0	1	6	4.8	86	491
381849/22	8	3 H1 TADCASTER No cropping details given	7.8	2	2-	6	18.2	179	427

If general fertiliser and lime recommendations have been requested, these are given on the following sheets.

The analytical methods used are as described in DEFRA Reference Book 427

The index values are determined from the AHDB Fertiliser Recommendations RB209 9th Edition.

Released by Sandy Cameron

On behalf of NRM

Date 16/09/22

t: w: NRM, Coopers Bridge, Braziers Lane, Bracknell, Berkshire RG42 6NS

PAAG

MICRO NUTRIENT REPORT

DATE 16th September 2022

SAMPLES FROM YORKSHIRE GREEN

WARDELL ARMSTRONG LLP CITY QUADRANT 11 WATERLOO SQUARE NEWCASTLE UPON TYNE NE1 4DP

Reference: 71923/381846/22	Field Name: 21 H2 TADCASTER	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		2.0			data not ava			
Sand (2.00 - 0.063mm) %		16						
Silt (0.063 - 0.002mm) %		53						
Clay (< 0.002mm) %		31						
Textural Classification	Silty C	lay Loam	2					
D-(Dessel	(+)			_		L
Reference: 71923/381847/22	Field Name: 21 H1 TADCASTER	Result			Marginal	-	-	Excessive
Organic matter (LOI) % Sand (2.00 - 0.063mm) %		4.8	1	OM level	data not ava	ulable for th	ns crop	
Silt (0.063 - 0.002mm) %		32	3					
One (0.000 - 0.002000) 76								
		20						
Clay (< 0.002mm) %	C.	29 lav Loam	2					
	C	29 Iay Loam	2					

Reference: 71923/381848/22 Field Name: 3 H2 TADCASTER

Result (*) Deficient Marginal Target Marginal Excessive

Report continued......

NRM, Coopers Bridge, Braziers Lane, Bracknell, Berkshire RG42 6NS

w:

PAAG

t: +4

MICRO NUTRIENT REPORT

DATE

16th September 2022

SAMPLES FROM YORKSHIRE GREEN

WARDELL ARMSTRONG LLP CITY QUADRANT 11 WATERLOO SQUARE NEWCASTLE UPON TYNE NE1 4DP

Tel:

Reference: 71923/381848/22	Field Name: 3 H2 TADCASTER	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		4.4	1	OM level	data not ava	ilable for th	s crop	
Sand (2.00 - 0.063mm) %		13]					
Silt (0.063 - 0.002mm) %		53	1					
Clay (< 0.002mm) %		34	1					
Textural Classification	Silty Cla	ay Loam	2					
			-					
			(4)					1

Reference: 71923/381849/22 Field Name: 3 H1 T/	ADCASTER Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %	4.6	1	OM level	data not ava	ilable for th	is crop	
Sand (2.00 - 0.063mm) %	33	1		•			
Silt (0.063 - 0.002mm) %	40	1					
Clay (< 0.002mm) %	27]					
Textural Classification	Clay Loam	2					

Notes (*)

- (1) NRM considers Organic soils to contain between 10-20% organic material with Peaty soils containing over 20%. The optimum ranges for Organic Matter which have been set are dependent on the soil type and the cropping but these must be viewed as guidance values only.
- (2) In calcareous soils the sand, silt and clay sized fractions are likely to contain particles of carbonate which may result in the incorrect classification of soil type.

DATE SAMPLES FROM	16th September 2022 YORKSHIRE GREEN	WARDELL ARMSTRONG LLP CITY QUADRANT 11 WATERLOO SQUARE
SAMPLED BY	B THOMAS	NEWCASTLE UPON TYNE NE1 4DP
Report reference	CA10796 71923/22	Tel:
hepoliticicici	1020/22	Fax:

Fertiliser Recommendations

The phosphate and potash recommendations shown below, are those required to replace the offtake and maintain target soil indices. The larger recommended applications for soils below target index will allow the soil to build up to this target index over a number of years. Not applying fertiliser to soils which are above target index will allow the soil to run down over a number of years to the target index.

The recommendation should be increased or decreased where yields are substantially more or less than that specified. The amount to apply can be calculated using the expected yield and values for the offtake of phosphate and potash per tonne of yield given in the RB209 9th edition. All recommendations are given for the mid-point of each Index.

Where a soil analysis value (as given by the laboratory) is close to the range of an adjacent Index, the recommendation may be reduced or increased slightly taking account of the recommendation given for the adjacent Index. Small adjustments of less than 10 kg/ha are generally not justified.

Efficient use of P and K is most likely to be achieved on soils that are well structured and enable good rooting.

For visual evaluation of soil structure (VESS), a score on 1 or 2 would be considered adequate.

Don't forget to deduct nutrients applied as organic manures.

For Nitrogen recommendations please refer to the RB209 9th edition or seek advice from an FACTS qualified adviser.

Target Indices:

Arable, Forage, Grassland and Potato Crops: P Index 2, K Index 2-

(In rotations where most crops are Autumn-sown, soils are in good condition and P is applied annually, high index 1 can be an adequate target.)

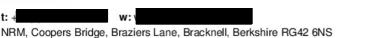
Vegetables and Bulbs: P Index 3, K Index 2+

(If vegetables are only grown occasionally as part of an arable rotation, it would be most economic to target index 2 for arable and forage crops.)

Fruit Vines and Hops: P Index 2, K Index 2, Mg Index 2 (Note: Cider apples respond to K Index 3, Mg Index 3)

A lime recommendation is usually for a 20cm depth of cultivated soil or a 15cm depth of grassland soil. Where soil is acid below 20 cm and soils are ploughed for arable crops, a proportionately larger quantity of lime should be applied. However, if more than 10 t/ha is needed, half should be deeply cultivated into the soil and ploughed down, with the remainder applied to the surface and worked in.

For established grassland or other situations where there is no, or only minimal soil cultivation, no more than 7.5 t/ha of lime should be applied in one application. In these situations, applications of lime change the pH below the surface very slowly. Consequently, the underlying soil should not be allowed to become too acidic because this will affect the root growth and thus limit nutrient and water uptake, which will adversely affect yield.


Fertiliser recommendations are based on AHDB RB209 (Ninth Edition). If a nutrient is deficient and no recommendation

is given, either no recommendation is given in RB209 or we have insufficient data to give a recommendation. Apply Lime to the nearest half Ton / Tonne. NRM is a UKAS accredited laboratory to ISO/IEC 17025

Report continued

PAAG

t: -

Lime (Arable) (Grass)

0

0

0

0

MgO

T/Ac

Te/Ha

DATE 16th September 2022 SAMPLES FROM YORKSHIRE GREEN				WARDELL ARMSTRONG CITY QUADRA 11 WATERLOO SQUA NEWCASTLE UPON TY							
SAMPLED BY	B THOMAS CA10796						NE1 4				
Report reference	71923/22		Tel:								
	Fertiliser Rec	commendations									
Field Name / Ref / Soil Typ	pe Last Crop / Next Crop		P205	K20	MgO	Lin	ne (Arable)	(Grass)			
21 H1 TADCASTER	Not Given / Not Given	Units/Acre				T/Ac	0	0			
381847 / Medium		Kg/Ha				Te/Ha	0	0			
Field Name / Ref / Soil Typ	be Last Crop / Next Crop		P205	K20	MgO	Lin	ne (Arable)	(Grass)			
3 H2 TADCASTER	Not Given / Not Given	Units/Acre				T/Ac	0	0			
381848 / Medium		Kg/Ha				Te/Ha	0	0			

Field Name / Ref / Soil TypeLast Crop / Next CropP205K203 H1 TADCASTERNot Given / Not GivenUnits/Acre381849 / MediumKg/Ha

Fertiliser recommendations are based on AHDB RB209 (Ninth Edition). If a nutrient is deficient and no recommendation is given, either no recommendation is given in RB209 or we have insufficient data to give a recommendation. Apply Lime to the nearest half Ton / Tonne. NRM is a UKAS accredited laboratory to ISO/IEC 17025

Page intentionally blank

National Grid plc National Grid House, Warwick Technology Park, Gallows Hill, Warwick. CV34 6DA United Kingdom

Registered in England and Wales No. 4031152